Fast Acting Flow Control Valve, Phase II

Completed Technology Project (2015 - 2017)

Project Introduction

High power electric propulsion systems have the potential to revolutionize space propulsion due to their extremely high performance. This can result in significant propellant savings on space vehicles, allowing the overall mass to shrink for launch on a less expensive vehicle or to allow the space vehicle to carry more payload at the same weight. Many of the electrical propulsion systems operate in pulse mode, pulsing hundreds or even thousands of times per second. Creating reliable valves that can operate in pulse mode for extremely long life and at low power are critical in these applications. In Phase 1 of this effort, WASK Engineering demonstrated the suitability using a piezo actuated valve to meet the requirements of electric thrusters. Valves actuated with piezo crystals offer the benefits of 1) a demonstrated ability to operate at frequencies from 0 Hz to over 1,000 Hz, 2) the ability to throttle continuously from 0-100% open, 3) extremely fast response, 4) low power usage, 5) opening the valve with infinitely variable operating waveforms, sine wave, square wave, saw tooth, custom wave form, etc., 6) no EMI generated, and 7) a very low part count for reliability

Primary U.S. Work Locations and Key Partners

Fast Acting Flow Control Valve, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Fast Acting Flow Control Valve, Phase II

Completed Technology Project (2015 - 2017)

Organizations Performing Work	Role	Туре	Location
WASK Engineering, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Cameron Park, California
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Primary U.S. Work Locations	
Alabama	California

Images

Briefing Chart

Fast Acting Flow Control Valve Briefing Chart (https://techport.nasa.gov/imag e/134255)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

WASK Engineering, Inc.

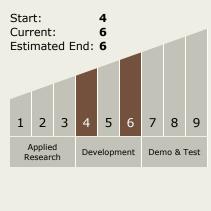
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

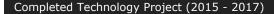
Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Wendel M Burkhardt


Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Fast Acting Flow Control Valve, Phase II

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

